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An iterative algorithm for the solution of the Helmholtz equation is developed. The 
algorithm is based on a preconditioned conjugate gradient iteration for the normal equations. 
The preconditioning is based on an SSOR sweep for the discrete Laplacian. Numerical results 
are presented for a wide variety of problems of physical interest and demonstrate the effec- 
tiveness of the algorithm. 

1. INTRODUCTION 

In this article we shall develop an iterative method to solve the Helmholtz equation 

Au + k2(x, y)u = 0, (1.1) 

in several geometries and in two and three dimensions. In general, the function k(x, y) 
approaches a constant as the distance from a fixed point approaches infinity. We 
shall consider only constant k although the method proposed here is valid for 
variable k. 
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One important physical application of (1.1) is to the scattering of acoustic waves 
by an obstacle (see, e.g., Bowman et al. [6]). In this case we consider the following 
boundary value problem in the region 0 exterior to the surface S of the body: 

Au + k2u = 0 in Q, (1.2a) 

au 
an- -f on S, (1.2b) 

Condition (1.2b) is for a hard scatterer. For a soft scatterer (1.2b) is replaced by a 
Dirichlet condition. Condition (1.2~) is the Sommerfeld radiation condition in three 
dimensions. A similar condition is valid in two dimensions. 

Problem (1.2) can be solved by integral equation methods (see Kleinman and 
Roache [ 171). In this approach (1.2) is replaced by a Fredholm integral equation 
(typically of the second kind) over the surface S. As k increases, however, the 
solution becomes more oscillatory and this method requires the inversion of a large 
full matrix. Asymptotic methods can be developed for large values of k (see, e.g., 
Lewis and Keller [20]). In practice, many of the features predicted by the asymptotic 
methods can be at least qualitatively observed at moderate frequencies (see, e.g., 
Kriegsmann and Morawetz [ 181). 

Integral equation methods, in addition to requiring the inversion of large full 
matrices, are restricted to constant values of k. In this article we shall consider the 
more general approach of introducing an artificial surface r, for example the sphere 
r = r,, which surrounds the surface S. On r it is necessary to impose an approx- 
imation to the radiation condition (1.2~). This approach was adopted by Bayliss et 
al. [4], Goldstein [ 121, Kriegsmann and Morawetz [ 181, and MacCamy and Marin 
[21]. The radiation condition can be either global [21] or local [4, 181. Goldstein 
[ 131 demonstrated that this method could be coupled with a properly graded radial 
mesh thereby substantially improving the efftciency of the method. 

The continuous problem (1.2) is then replaced by a boundary value problem in a 
bounded domain. It can therefore be approximated by some standard discretization 
method such as finite differences or finite elements. In [4] a Galerkin finite element 
algorithm is described. This algorithm was used to obtain the numerical results 
presented in Section 3. 

The result of any discretization is a large, linear system of equations 

Ax=b, (1.3) 

where x approximates the solution to (1.2) and b is determined by the boundary data. 
The large, sparse matrix A is difficult to invert by standard iterative methods (see, 
e.g., Varga [25] and Young [27]) since the Hermitian part of A will often be 
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indefinite. This will occur whenever kZ in (1.1) is larger than the smallest eigenvalue 
of the discrete approximation to -,4. In addition, the matrix A is not Hermitian since 
the radiation condition (1.2~) involves complex constants. Thus in most codes (e.g., 
[4,21]) Gaussian elimination is used to invert A. Gaussian elimination, however, 
requires an excessive amount of storage which limits the number of mesh points that 
can be used. This limits the effective values of k that can be computed since the 
solution becomes more oscillatory as k increases. Thus in order to effectively utilize 
the sparseness of A it is important to develop an iterative technique to solve (1.3). 

An additional physical application of (1.1) is to the propagation of sound waves 
underwater. In this case we formulate the problem in cylindrical coordinates I and z 
(assuming symmetry about the axis r = 0). We then consider the regions I, < r < r2 
and 0 <z < H and the resulting boundary value problem is 

Au+k’u=O, (1.4a) 

u =f(z) at r = ri > 0, (1.4b) 

u=o at z = H, (1.4c) 

C3.l 

z= 
0 at z=O. 

In addition, we must specify a radiation condition along the artificial boundary 
r = rz. In a realistic model the sound speed will be a function of z and r; however, for 
simplicity, we shall take it to be constant. The imposition of the source at r, > 0 
simplifies the Galerkin formulation of (1.4). Allowing rl = 0 should not change the 
conditioning of the problem. 

An important feature of this problem is that for large r the solution consists of a 
finite number of propagating waves that are asymptotically of the form&(z) eiqr/\/;, 
where the constants {a,} and the functions f,(z) can be readily determined. The 
number of such propagating modes, as well as the wave numbers ai, depend on k. 
The remaining terms in the solution decay exponentially in r and are termed 
evanescent modes. An analysis of this problem is given by Ahluwalia and Keller [ 1 ] 
and by Fix and Marin [ 111. 

Fix and Marin [ 111 developed a global boundary condition valid at the artificial 
boundary r = r2. This boundary condition was incorporated in a variational 
formulation of (1.4). The resulting Galerkin approximation was solved by Gaussian 
elimination. An analogous method was analyzed by Goldstein [ 141 in connection 
with the Helmholtz equation in a variety of wave guides for which convergence and 
optimal error estimates were proved. In general, this proble’m cannot be formulated as 
an integral equation and it is therefore of interest to consider direct discretizations of 
(1.4). (A survey of other solution methods is contained in [ 11.) 

Bayliss and Turkel [5] have introduced local radiation boundary conditions for 
(1.4) as well as for some problems in duct acoustics. Independently, Kriegsmann [ 19) 



446 BAYLISS, GOLDSTEIN, AND TURKEL 

has used similar boundary conditions for problems with wave guides. A typical local 
boundary condition is of the form 

( 

c 1 
z-h,+- u 
ar 2r 1 I 

= 0, 
T=T* 

or 

( a. la. 1 
3772+5 

I( 
z-‘a’+r 21 T=lr 

) I _ 
= 0, (1.5b) 

where u, and c2 are wave numbers of the propagating modes. Condition (1.5b) is 
accurate if two propagating modes are present in the solution and is generally more 
useful. We note that (1.5a) and (1.5b) do not require knowledge of the normal modes 
fi(z). The radial wave numbers uj are easily found, if k is constant. In the case of 
variable k, they are obtained as the eigenvalues of a Sturm-Liouville problem for the 
normal modes. Only the first few eigenvalues need be computed. (The reader is 
referred to [5 ] for further details.) It is therefore clear that for problem (1.4) as well 
as for problem (1.2) the boundary conditions give rise to non-self-adjoint problems. 

One possible iterative technique to solve (1.1) is to look for time harmonic 
solutions to a wave equation which reduces to (1.1) in the case of harmonic time 
dependence. This method relies on the limiting amplitude principle. The number of 
iterations required for convergence depends on the decay rate of the transient and is 
highly problem dependent. This method was used by Kriegsmann and Morawetz [ 181 
for a wide collection of problems in exterior regions and by Baumeister [3] and 
Kriegsmann [ 191 for problems in duct geometries. 

The method proposed here is to solve (1.3) by a preconditioned conjugate gradient 
iteration method (Axelsson [2], Chandra [8], Concus et al. [9], Hestenes and Stiefel 
[ 161). Since the conjugate gradient (CG) method is not directly applicable to 
indefinite, non-self-adjoint problems we shall consider the normal equation 

A*Ax=A*b, (1.6) 

where A* is the adjoint of A. 
The matrix A*A is positive semidefinite for all boundary conditions. When 

radiation boundary conditions (e.g., (1.5)) are imposed, the matrix A is invertible (see 
[ 4, 121) and so A *A is positive definite. Therefore, the conjugate gradient method will 
converge. 

The matrix A*A is highly ill-conditioned and thus the resulting iterations will 
converge very slowly. In order to improve the conditioning of the iteration matrix 
A*A, we shall precondition A by a partial inverse of the discrete approximation to 
the Laplacian. Thus, instead of solving (1.6) we shall solve the equivalent system 

A’*Afx! -A’*b’ , (1.7) 
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where A’ = Q’AQ-‘, x’ = QTx, b’ = Q-lb, and M-’ = Q-*Q-r. The matrix M-’ 
is a partial inverse of the discrete Laplacian A ,, . This preconditoner will be obtained 
from the splitting A 0 = M - R corresponding to point symmetric successive 
overrelaxation (see [8]). Thus the matrix Q-’ corresponds to SOR (see [27]). 

The method of preconditioning is discussed in [2,9], where a comprehensive list of 
references may be found. An application of this method to the biharmonic equation is 
given by Nodera and Takahasi [24]. 

Methods have been developed to extend the conjugate gradient method to non-self- 
adjoint problems (e.g., Ellman [lo], Widlund [26]). These methods require that the 
Hermitian part of A be positive and are thus not directly applicable to the Helmholtz 
equation. In addition, some iterative methods have been developed for Hermitian, 
indefinite matrices (see [8,23]). -These methods, however, are not directly extendable 
to non-Hermitian matrices. 

One of the fundamental difficulties in solving the Helmholtz equation is that the 
matrix resulting from a discretization is both non-self-adjoint and has an indefinite 
Hermitian part. We shall see that the use of a preconditioner based on the structure 
of the equation (i.e., Laplacian plus lower order terms) will dramatically accelerate 
the convergence of the normal equations. The resulting algorithm will permit 
solutions to be computed for practical grid sizes using a relatively small amount of 
computer time. The algorithm will be described in detail in Section 2. Numerical 
results will be presented in Section 3. 

2. ITERATIVE ALGORITHM 

The basic equation is the Helmholtz equation 

Au + k2u = 0, (2.1) 

with appropriate boundary conditions at both physical and artificial surfaces as 
described in Section 1. A discretization of (2.1) give rise to a matrix equation 

Ax=b, (2.2) 

where the matrix A is, in general, not Hermitian and has an indefinite Hermitian part. 
We first precondition A by a matrix Q-r, where Q-’ is a partial inverse of the 

discrete Laplacian. For all of the cases considered here Q-’ consists of a sweep of 
SOR. We can now replace (2.2) by 

where 

A’x’ = b’, (2.3) 

A’ = Q-‘/IQ-‘, x’ = Q'x, b’ = Q-lb. 
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Premultiplying both sides of (2.3) by A ’ * yields 

(2.4) 

where 

A’*A’ = Q-lA*M-lAQ-T and M-1 = Q-r,-,. 

The preconditioned conjugate gradient algorithm applied to (2.4) is then given by 
(see 191): 

(1) Choose an initial guess x0, 

set r,=b-Ax,, 

set p,, = M-‘A*M-‘r, 

set i = 0. 

where M = QQT, 

(2) Let 

a, = (Q-‘A*M-‘r,, Q-‘A*M-‘ri) 
I (Q-‘AP,, Q-‘APi) ’ 

dyi+l =xi+aipi, ri+,=ri-aiApi, 

b,= (Q-‘A*M-‘q+,, Q-‘A*M-‘r,+,) 
I (Q-‘A*M-‘ri, Q-,A*M-‘ri) ’ 

and 

Pi+ I =M-‘A*M-‘ri+, + b,p,. 

t3) If ‘i+l is sufficiently small or if the number of iterations exceeds a 
prescribed number, stop. Otherwise, set i = i + 1 and go to (2). 

The initial guess is chosen as x0 = 0 although better choices are clearly possible. 
Observe (see [8]) that the matrix A*A (or A’*A’) need never be computed. In fact, 
since only routines to compute the product of A (or A*) times a vector are required, 
the bandwidth of A is irrelevant. This is in contrast to the situation with Gaussian 
elimination, where storage must be allocated for the bandwidth in each row of the 
matrix. Note that Q-i can be transferred to the other side of the inner products for ai 
and bi so that only M-i appears and not Q-‘. If Fi = A*hM-‘r, is introduced, then 
the algorithm requires two inversions of M, multiply one matrix by A, and multiply 
one matrix by A* per iteration step. Since M-i is a partial inverse of A the 
magnitude of Fi is about the same as ri and the stopping criterion can be based on Fi. 

The matrix M-’ is obtained from point SSOR applied to the discrete Laplacian. 
Preconditioners based on more than one sweep of SSOR were found to be less 
efficient because of the added cost of each sweep. This indicates that the use of fast 
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solvers as preconditioners also may not be efficient. Our results show that the precon- 
ditioner provided significant acceleration even when k was not small so that the 
equation could not be regarded as a perturbation of the Laplacian. 

To describe the preconditioning more carefully, we let A, be the matrix that results 
from setting k = 0 in A. Hence, A, represents the discrete Laplacian including 
appropriate boundary conditions. Let D,, L,, U, denote the diagonal, strictly lower, 
and upper parts of A,, respectively, and let w be a parameter, 1 < w < 2. Then (see, 
e.g., [81) 

Q = (D, - wL,) D, I”. G-5) 

The operation count per iteration can be reduced by computing wL, and WV,, once 
and then scaling A and A, by the diagonal elements of A,. 

For the Galerkin method with continuous, piecewise linear elements (as discussed 
in [4]) there are at most seven nonzero elements in each row of A. Hence the precon- 
ditioned CG algorithm with one sweep of SSOR requires 33N + 2 multiplications or 
divisions per iteration. (N is the number of unknowns.) The nonpreconditioned CG 
algorithm requires 19N + 2 operations per iteration. The results of Section 3 
demonstrate that the acceleration due to the preconditioning is so great that the 
additional operations are negligible. 

The amount of storage required depends linearly on the number of grid points. In 
addition, seven vectors need to be stored. Hence, the storage is much less than that 
required by any version of Gaussian elimination. A scheme based on the limiting 
amplitude principle should require similar storage (see [3, 181). 

In order to understand the acceleration due to the preconditioning, we consider the 
two extremes in which either no preconditioning is done or we precondition by the 
inverse of A,. For any positive definite symmetric matrix B we define the condition 
number 

where Amax is the largest eigenvalue of B and Amin is the smallest. It is well known [8] 
that if there is no preconditioning, then for any fixed k 

K(z‘i *A) = O(h -4), 

where h is the smallest grid size. On the other hand, when the preconditioner is A 0 ‘, 
then it is easily seen that if there are only Neumann (or Dirichlet) boundary con- 
ditions, 

K@‘*/i’) = o(l), 

for fixed k and h sufficiently small. 
Since the convergence rate of the conjugate gradient method depends on the 

reciprocal of the square root of the condition number (see [S]) it follows that without 
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preconditioning the convergence rate is 0(/z’) while preconditioning by A;’ gives a 
convergence rate that is O(1) as h + 0 (for fixed k). Here h is a measure of the grid 
size. 

Preconditioning by several sweeps of SSOR lies between these two extremes. Our 
numerical experiments in preconditioning by many sweep of SSOR indicated a 
convergence rate nearly independent of h. Because of the increased cost of each 
iteration, however, we found that preconditioning by one sweep of SSOR was most 
efficient. 

An even simpler preconditioning is to scale the diagonal elements of A, to unity. It 
is easy to see that @‘*A’) is still O(hm4) in this case so that no improvement in the 
convergence rate is to be expected. This is borne out by the numerical results 
presented in Section 3. 

It is shown in [8] for a model problem that preconditioning a positive definite 
symmetric matrix by one sweep of SSOR will result in an iteration matrix with a 
condition number the square root of that of the original matrix. In our case the SSOR 
sweep is based on only the definite part of the Hermitian part of A and thus the 
theory is not applicable. The numerical results presented in Section 3, however, will 
demonstrate that the convergence rate is close to O(h) for a wide variety of practical 
problems involving the Helmholtz equation. 

An even greater improvement can be obtained by using one sweep of a multigrid 
algorithm as the preconditioning. With the use of a red-black ordering the multigrid 
operator is positive definite. Based on arguments that multigrid requires only O(n) 
operations [ 7, 15,221, the preconditioned matrix for the Helmholtz equation should 
have a convergence rate that is independent of h. 

3. NUMERICAL RESULTS 

In this section, we describe some numerical results for the algorithm developed in 
Section 2. The numerical examples will be drawn from model problems but will 
illustrate the benefits to be expected in more realistic problems. 

We first consider the problem 

Au + k2u = 0, O<x<n, o<y<n, (3.la) 

%(OT Y) =f, (3. lb) 

%(G Y) = g, (3. lc) 

u,(x, 0) = u(x, n) = 0, (3. Id) 

where k is a constant. In this problem we use a simple Neumann condition at the 
boundary x = 7c and therefore the homogeneous problem is self-adjoint. (The matrix A 
of the Galerkin approximation will be real and symmetric.) 
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The eigenvalues of the continuous problem 

Au = lu, 

U”(O, Y) = U,(% Y) = 0, 

z&(X, 0) = u(x, 71) = 0, 

can be easily calculated. These eigenvalues are 

(3.2a) 

(3.2b) 

(3.2~) 

A = -(m’ + (n + f)Z), m > 0, n > 0. (3.3) 

It is therefore possible to investigate the effectiveness of our algorithm for values of k 
for which the resulting problem is highly indefinite. 

In Table I, the number of iterations required for convergence is shown for different 
values of k. The stopping criteria is that the relative L, norm of the residual be less 
than 10m6, which is well within the truncation error. This criteria is used in all of the 
examples presented here. Results are presented for the preconditioned algorithm and 
for the unpreconditioned algorithm with and without the diagonal elements of A, 
scaled to unity. In the preconditioned case, the relaxation parameter w is the 
experimentally determined optimal parameter, although the results are not strongly 
sensitive to o. The functions f and g are chosen so that the exact solution 
corresponding to Tables I-IV is 

u = d-x cos(y/2), (3.4) 

although similar results were obtained for other data. A square grid (N x N) was 
used. 

This problem, since it is self-adjoint, can be solved by other methods (see [8]). The 
results, however, clearly demonstrate that a very substantial acceleration can be 
obtained even when the matrix is highly indefinite. 

TABLE I 

Results for Problem (3.1) 

Number of Number of Iterations 
positive 

k N w eigenvalues (***) (**) (*) 

2.77 41 1.68 8 188 2111 2511 
2.11 61 1.75 8 304 4715 >6000 
4.16 41 1.66 16 211 2552 2930 
4.16 61 1.12 16 342 4851 >6000 

(*) Unpreconditioned without diagonal scaling. 
(* *) Unpreconditioned with diagonal scaling. 

(* * *) Preconditioned. 

581/49/3-7 
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As the second example, we replace (3.1~) by a realistic radiation condition. In this 
case we consider the problem 

Au + k2u = 0, o<x<n, o<y<Ir, (3Sa) 

%(a Y> =.L (3Sb) 

-- ’ i~iF?iTSu,~ 
i?X 

=O, 
X=X 

(3Sc) 

UJX, 0) = u(x, 7r) = 0. (3.5d) 

This problem, in cylindrical coordinates, models the propagation of a sound wave 
underwater with only one propagating mode. We shall present results for the 
Cartesian case although the results are very similar in the cylindrical case. 

In Table II the number of iterations required for convergence is shown for a fixed 
value of k, k = 2.77, and for different grid sizes. Results are also shown for the 
unpreconditioned algorithms. The Laplacian matrix, on which the preconditioner is 
based, is constructed using the same boundary conditions as in (3.5) but with k = 0 
in (3.5~) (now a real boundary condition). 

The data in Table II show that the preconditioned algorithm on the finer grids 
reduces the number of iterations by more than a factor of fifteen from the unprecon- 
ditioned, diagonally scaled algorithm. Both unpreconditioned algorithms exhibit the 
expected O(N-‘) convergence rate although there is some reduction due to the 
diagonal scaling. The convergence of the preconditioned algorithm is only slightly 
worse than O(N-‘). 

For the case k = 0 and Dirichlet boundary conditions on all boundaries it can be 
easily seen, using the methods of [8], that the number of iterations required for 
convergence is O(N). Our results indicate that the deviation from the optimal 

TABLE II 

Results for Problem 3.5 

Number of iterations 

N W (***) (**) (*I 

21 1.36 88 554 632 
31 1.66 124 1213 1374 
41 1.72 174 2137 2407 
51 1.76 226 3327 3693 
61 1.76 284 4758 5281 

(*) Unpreconditioned without diagonal 
scaling. 

(* *) Unpreconditioned with diagonal scaling. 
(* * *) Preconditioned. 
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TABLE III 

Dependence of the Number of Iterations on k 

N k w Number of iterations 

31 0 1.66 83 
31 0.69 1.66 98 
31 1.39 1.66 106 
31 2.11 1.66 124 
31 4.16 1.64 138 
61 0 1.71 191 
61 0.69 1.73 219 
61 1.39 1.77 243 
61 2.17 1.76 284 
61 4.16 1.73 308 
61 21.33 0.90 915 

convergence rate is probably due to the more complicated boundary conditions. In 
fact, for the case k = 0, the convergence rate is no better than the rate indicated in 
Table II. 

We next consider the effect of increasing k on the number of iterations required for 
convergence in problem. (3.5). In Table III the number of iterations required for 
convergence is shown for several different values of k and for two different grid sizes. 
The results show that the number of iterations increases with k but at a rather slow 
rate. The number of iterations appears to grow slower than linearly in k. The optimal 
relaxation parameter is relatively independent of k. 

For our next example, we consider the effect of changing the radiation boundary 
condition. In this case condition (3.5~) is replaced by the higher order condition 

(3.6) 

This boundary condition, the analog of (1.5b) for Cartesian coordinates, is exact for 
two propagating modes. The implementation of (3.6) in a Galerkin code is discussed 
in [4]. In Table IV the number of iterations required for convergence is shown for 
k = 2.11. 

The higher order boundary condition tends to slow down the convergence of all 
three methods. The convergence rate as a function of N and the optimal relaxation 
parameter are not drastically changed. The preconditioner in this case is based on the 
Laplacian with k = 0 in (3.6) (this is now a real boundary condition). Failure to do 
this can degrade the convergence of the preconditioned algorithm. In fact, for the case 
N = 6 1, the number of iterations required for convergence increased from 35 1 to 443 
when the Laplacian used for preconditioning is constructed using (3.5~) (with k = 0). 
This shows that at least part of the benefit of the preconditioning is as an approx- 



454 BAYLISS, GOLDSTEIN, AND TURKEL 

TABLE IV 

Results for Boundary Condition (3.6) 

Number of iterations 

N w (***) (**I (*) 

31 1.60 163 1398 1437 
61 1.73 351 5650 >6000 

(*) Unpreconditioned without diagonal 
scaling. 

(* *) Unpreconditioned with diagonal scaling. 
(* * *) Preconditioned. 

imate inverse of the part of the matrix corresponding to the boundary terms. These 
results clearly suggest that the algorithm could provide substantial acceleration when 
the global boundary conditions of [ 11,2 I] are used provided the boundary conditions 
of the Laplacian preconditioner are properly chosen. The use of global boundary 
conditions will reduce the sparsity of the matrix A and thus possibly degrade the 
efficiency of the conjugate gradient iteration. 

For our next example we consider the singular perturbed problem 

EU,, + u,,, + k*u = 0, (3.7a) 

u,(O, VI =f, (3.7b) 

Ux(T Y) = g9 (3.7c) 

UJX, 0) = 24(x, 7r) = 0. (3.7d) 

This problem can model the case of severe coordinate stretching in the x direction. It 
can also serve as a model *for the linearized small disturbance equation assuming a 
harmonic time dependence and a purely subsonic mean flow. 

In Table V we present the results of computations for problem (3.7). In the table 
k = 2.77 and the Neumann data f and g are the same as for the data presented in 
Table I. The value of E was chosen to be 0.1. 

The data in Table V show a strong acceleration still can be obtained from the 
preconditioned algorithm. Convergence is degraded for all of the methods; however, 
the improvement of the preconditioned algorithm is still more than a factor of 10 
better than the unpreconditioned algorithms. The use of line successive overrelaxation 
LSOR could be expected to substantially accelerate the convergence particularly if 
smaller values of E are considered (see [S)). 
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TABLE V 

Results for Problem (3.7) 

Number of iterations 

N 6J (***I (**) (*I 

31 1.56 248 2684 2958 
61 1.73 552 >6000 >6000 

(*) Unpreconditioned without diagonal 
scaling. 

(* *) Unpreconditioned with diagonal scaling. 
(* * *) Preconditioned. 

For our final example we present results for a scattering problem analogous to 
(1.2). The problem is 

Au + k2u = 0, (3.8a) 

u, =.ft on r=ro, (3.8b) 

u,,+ (+--2ik)u.t (+k)$-k’u=O, on r=rl. (3.8~) 

Problem (3.8) describes the scattering of an acoustic wave by the sphere r = ro. 
Axial symmetry is assumed so that in spherical coordinates r and 8 the Laplacian 
becomes 

The radiation boundary condition (3.8~) is a highly accurate approximation to the 
Sommerfeld radiation condition (1.2~) (see [4] for further details). 

In Table VI the number of iterations required for convergence is presented for the 
preconditioned and unpreconditioned algorithms. We present results both for a 
uniform mesh in r and 19 and for a mesh which is stretched to become coarser as r 
increased (see [ 131). The number of grid points is N, x N,. In both cases the 
scattering obstacle is the sphere r = 0.5. For the uniform mesh the outer boundary is 
the sphere r, = 1.1, while for the graded mesh the outer boundary is the sphere 
r, = 2.12. The graded mesh is chosen so that the tirst grid point off the sphere 
r,, = 0.5 agrees with the first grid point of the uniform mesh. The Neumann data in 
(3.8b) is chosen so that the exact solution is 

UC= 
r-r* ’ (3.9) 
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TABLE VI 

Results for Problem (3.8) 

Number of iterations 

N,IN, w (***) (**) (*) Mesh 

33144 1.70 252 3158 >6000 Uniform 
33144 1.62 217 2232 >6000 Graded 

(*) Unpreconditioned without diagonal scaling. 
(* *) Unpreconditioned with diagonal scaling. 

( * * *) Preconditioned. 

where r* = 0.485. Thus this solution exhibits rather rapid changes in both 9 and r 
and therefore requires a fine grid to compute. The value of k is 5.0. 

The data demonstrate that the improvement due to the preconditioning is even 
greater than in the previous problems. This is probably due to the fact that the 
smallest h is smaller than before. Similar results were found for the less accurate first 
order boundary condition (see [4]) 

u,-iku+t=O on r=r,. (3.10) 

4. CONCLUSIONS 

An iterative method for the Helmholtz equation has been developed. The method is 
based on a preconditioned conjugate gradient iteration for the normal equations with 
a preconditioning based on an SSOR sweep for the Laplacian. The algorithm is 
heuristically justified by the compression of the spectra of the Helmholtz operator 
when combined with an inverse of the Laplacian. 

Numerical results have been presented for a wide range of problems which model 
problems occurring in physical applications. The results show the method to be 
effective even when the problem is highly indefinite and higher order radiation 
boundary conditions are used. In these cases the problem can not be considered a 
perturbation of the Laplace equation. The observed convergence rate is an order of 
magnitude better than for the unpreconditioned algorithm. Calculations for variable k 
will be presented in a future work. It is anticipated that the method will be equally 
efficient for these cases. 
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